
BITSTREAM SYNTAX DESCRIPTION-BASED ADAPTATION
IN STREAMING AND CONSTRAINED ENVIRONMENTS

Sylvain Devillers*, Christian Timmerer‡, Jörg Heuer†, and Hermann Hellwagner‡

* France Telecom R&D, Issy les Moulineaux, France

sdevillers.ext@rd.francetelecom.com

‡ Department of Information Technology (ITEC), Klagenfurt, Austria
{christian.timmerer, hermann.hellwagner}@itec.uni-klu.ac.at

† Siemens AG, Corporate Technology, IC 2, Munich, Germany

Joerg.Heuer@siemens.com

Department of Information Technology (ITEC)
Klagenfurt University
Technical Report No. TR/ITEC/05/1.05
June 2005

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 3, JUNE 2005 463

Bitstream Syntax Description-Based Adaptation in
Streaming and Constrained Environments

Sylvain Devillers, Christian Timmerer, Jörg Heuer, and Hermann Hellwagner, Member, IEEE

Abstract—The seamless access to rich multimedia content on
any device and over any network, usually known as Universal
Multimedia Access, requires interoperable description tools and
adaptation techniques to be developed. To address the latter
issue, MPEG-21 Digital Item Adaptation (DIA) introduces the
Bitstream Syntax Description (BSD) framework, which provides
tools for adapting multimedia content in a generic (i.e., coding
format independent) way. The basic idea is to use the eXtensible
Markup Language (XML) to describe the high-level structure
of a binary media bitstream, to transform its description [e.g.,
by means of eXtensible Stylesheet Language Transformations
(XSLT)], and to construct the adapted media bitstream from the
transformed description. This paper presents how this basic BSD
framework, initially developed for nonstreamed content and suf-
fering from inherent limitations and high memory consumption
of XML-related technologies such as XSLT, can be advanced
and efficiently implemented in a streaming environment and on
resource-constrained devices. Two different attempts to solve the
inherent problems are described. The first approach proposes an
architecture based on the streamed processing of Simple Appli-
cation Programming Interface for XML (SAX) events and adopts
Streaming Transformations for XML (STX) as an alternative
to XSLT, whereas the second approach breaks a BSD up into
well-formed fragments called process units that can be processed
individually by a standard XSLT processor. The current status of
our work, as well as directions for future research, are given.

Index Terms—BSD, MPEG-21, MPEG-7 BiM, multimedia con-
tent adaptation, SAX, STX, transcoding, Universal Multimedia
Access, XML, XSLT.

I. INTRODUCTION

THE LAST DECADE has brought about an enormous
growth of digital multimedia content on the Internet.

This also pertains to the diversity of media formats and the
richness of the contents. For instance, just MPEG-4 specifies
object-based coding techniques, scene descriptions tools and
a variety of specific codecs ranging from audio and video to
graphics and synthetic content, providing interactivity and scal-
ability. Additionally, various proprietary formats from industry,
as well as from open source projects are in use.

Manuscript received May 5, 2004; revised September 16, 2004. This work
was supported in part by the European research projects ISIS (IST-2001-37253)
and DANAE (IST-1-507113). The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Anthony Vetro.

S. Devillers was with IMEC, Interuniversity MicroElectronics Center,
Leuven, Belgium. He is now with France Telecom, R&D Division, Issy les
Moulineaux, France (e-mail: Sylvain.Devillers@free.fr).

C. Timmerer and H. Hellwagner are with the University of Klagenfurt, Kla-
genfurt, Austria (e-mail: christian.timmerer@itec.uni-klu.ac.at; hermann.hell-
wagner@itec.uni-klu.ac.at).

J. Heuer is with Siemens Corporate Technology, Munich, Germany (e-mail:
Joerg.Heuer@siemens.com).

Digital Object Identifier 10.1109/TMM.2005.846794

At the same time, the diversity of devices via which access to,
and interaction with, multimedia content is desired, has grown
significantly. The spectrum ranges from workstations, personal
computers and set-top boxes to portable devices like Web pads,
personal digital assistants, and even mobile phones. Low-end
devices are constrained in various ways, such as in terms of
display size, color capabilities, input options, processing power,
memory resources, and power supply.

Finally,awidespectrumofnetworks for the transmissionof the
multimedia contents has emerged as well. In particular, wireless
networks have proliferated in recent years, enabling users to ac-
cess the Web and multimedia content from different locations, in
different contexts, and with varying connectivity characteristics.

These three trends as well as additional factors, like specific
preferences or impairments of the users, represent major barriers
toward Universal Multimedia Access (UMA)—the ability to
access and consume multimedia content on any device, any-
where, anytime, in a seamless manner and customized to the
usage context and user preferences. [1] gives an overview of
what MPEG-21 Part 7: Digital Item Adaptation (DIA) specifies
to overcome those barriers. In particular, the Bitstream Syntax
Description (BSD) framework [2], [3] incorporates a number
of concepts for adapting multimedia content in a coding format
independent way. The latter is a step toward bridging the gap
between the diversity of media formats on the one hand and the
variety of networks and devices on the other hand. In other words,
this framework replaces potentially compute-intensive and spe-
cific transcoding operations, e.g., to adapt the spatial resolution
of a video, by two “generic” steps: 1) transformation of the BSD
characterizing the media bitstream (an eXtensible Markup Lan-
guage (XML) document) via eXtensible Stylesheet Language
Transformations (XSLT) [4], for instance, and 2) generation of
the adapted bitstream using the transformed BSD. This relieves
nodes in the media delivery and adaptation chain from having to
implement potentially manifold transcoding operations.

However,inorderfortheBSD-basedadaptationapproachtobe-
comefeasibleforpracticaluse, theseverytwostepsarerequiredto
be implemented efficiently. This requirement represents a major
challenge on resource-constrained devices such as the portables
listed above. There are two major limitations that have to be con-
sidered here.

The first aspect is that these devices usually do not have enough
memoryresourcestofullydownloadandplayavideo,forinstance,
but that streaming and piecewise or progressive rendering tech-
niques have to be applied. Moreover, such devices may be even so
shortofmemorythataBSDcannottobestoredasacompleteXML
document.This requires that theBSDhas tobefragmented,deliv-

1520-9210/$20.00 © 2005 IEEE

464 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 3, JUNE 2005

ered,andprocessedinpiecesaswell,potentiallyinsynchronywith
the media bitstream.

The second limitation is the usually poor computational
power of such devices. This restriction requires that BSD-based
adaptation has to be computationally cheap in order to be
executable on constrained portable devices.

These aspects, i.e., the need for a low-complexity, memory-
efficient, and streaming-compliant BSD framework implemen-
tation, are closely interrelated and require new concepts to be
developed. The usual implementation approach, as e.g., taken
in [3], relies on a legacy XSLT processor, which usually loads
the entire BSD into memory. This approach has to be abandoned
in a streaming or/and constrained environment.

This paper describes two different attempts to cope with these
resource constraints. The first approach proposes an architec-
ture based on the streamed processing of SAX events and adopts
STX, a streaming transformation language for XML, as an alter-
native to XSLT, whereas the second approach breaks the BSD
up into well-formed fragments called process units (PUs) that
can be processed by a standard XSLT processor.

The remainder of the paper is organized as follows. Section II
describes the background of this work, i.e., reviews the basic
BSD framework. Section III presents application scenarios
where BSD-based adaptation can be beneficial. In Section IV, the
two basic approaches, the STX/SAX-based and the PU-based
adaptation, are introduced. Section V outlines directions for
future research. Conclusions are given in Section VI.

II. BACKGROUND

MPEG-21 DIA specifies a generic framework that facilitates
media bitstream adaptation based on its BSD. A BSD is a
well-formed XML document describing the high-level struc-
ture of a bitstream. It is important to note that the aim of the
BSD is not to describe the bitstream on a bit-by-bit basis but
rather to record its organization in terms of packets, headers,
or layers of data. The adaptation of the actual bitstream is
performed by first transforming the BSD according to the
usage environment using standardized XML transformation
languages; subsequently a generic software module is used to
generate the adapted version of the bitstream. To this end, this
generic processor named BSDtoBin utilizes the information
conveyed by another XML document named Bitstream Syntax
Schema (BS Schema), which specifies the constraints on the
structure and datatypes of the BSDs describing bitstreams of a
given coding format. A new language named Bitstream Syntax
Description Language (BSDL) was developed, presented in [5]
and [6] and standardized in MPEG-21 DIA [7]. It is built on
top of XML Schema [8] with a set of syntactical extensions
and restrictions. The BS Schema may also be used by a second
generic processor named BintoBSD to parse a bitstream and
generate its BSD.

MPEG-21 DIA does not mandate any specific BS Schema
for well-known formats such as JPEG2000 or MPEG-4 Visual
Simple Profile. Rather, it standardizes an abstract, generic BS
Schema (gBS Schema), applicable to any coding format. A de-
scription conforming to this schema is called a generic BSD
(gBSD). Due to its abstract nature, the gBS Schema cannot

Fig. 1. MPEG-21 DIA descriptions used for multimedia content adaptation.

be used by the BintoBSD processor to generate the BSD. On
the other hand, the main advantage of this complementary ap-
proach is that it is possible to use a dedicated and more efficient
processor named gBSDtoBin to generate the bitstream from its
gBSD, which does not need to load and parse the gBS Schema
since it is standardized and can be hard-coded in the software.
The use of gBSD can thus be profitable in environments such
as proxies or thin clients where computing resources are lim-
ited. The application scenarios and architectures presented in
this paper are applicable to BSDs and gBSDs unless explicitly
specified. We refer readers interested in further details of the
BSD framework to [2], [3], [5], and [6], as well as to other pa-
pers appearing in this special issue, specifically [1].

In order to link the BSDs to other DIA descriptions used in
the content negotiation, DIA also specifies a tool, namely the
BSDLink description, which provides references to informa-
tion assets enabling interoperable bitstream adaptation based on
BSDs (Fig. 1). One reference identifies the so-called Steering
Description which is metadata associated with a bitstream sup-
porting the adaptation decision taking process [(1) in Fig. 1],
e.g., this description conveys possible parameter settings for the
adaptation engine such that the constraints given by the Usage
Environment (e.g., terminal and network capabilities) can be
satisfied. The results of the decision-taking process are param-
eters used to configure the target of another reference, the BSD
Transformation Style Sheet. Based on this style sheet, a BSD
transformation processor (2) transforms the BSD by applying
remove as well as minor editing operations, such as modifica-
tions of element values. The resulting Transformed BSD pro-
vides the input for the generic BSDtoBin Processor (3), which
generates the adapted bitstream based on the input bitstream.

The left part of Fig. 1, i.e., how to perform adaptation deci-
sion taking based on constraints of the Digital Item provider and
consumer, is intensely discussed in [9] and therefore not covered
in this paper.

Please note that Fig. 1 describes only one adaptation step. In
practice, however, several adaptation steps could be distributed
over different devices along the delivery path as discussed in
Section III-B.

This work has been initially inspired by the XML/XSLT pub-
lishing framework where the structure of the content is sep-
arated from its presentation and is adapted to the requesting

DEVILLERS et al.: BITSTREAM SYNTAX DESCRIPTION-BASED ADAPTATION 465

client in a Web context. However, to the best of our knowledge,
no work has been done so far to extend these principles to bi-
nary multimedia data and to other non Web-based applications.
Some work that is distantly related to BSD, e.g., Flavor [10] and
XFlavor [11], is discussed in [3].

III. APPLICATION SCENARIOS FOR BSD-BASED ADAPTATION

This section describes several application scenarios demon-
strating the flexibility of the BSD-based multimedia content
adaptation framework. Firstly, a classical scenario, where adap-
tation is performed on a server, is given. Then, it is shown how
using the BSD framework on the client can reduce the amount of
transferred data. Lastly, other scenarios where adaptation takes
place on an intermediate network node such as a proxy or a
gateway are described, raising new technical issues.

A. Adaptation on Server or Client

A simple and classical scenario for multimedia content adap-
tation is the one where a Web page displays a thumbnail image
with a hyperlink to a larger resolution image. With a nonscal-
able format such as the sequential mode of JPEG, two versions
of the same image at the required resolutions need to be stored
on the server. In contrast, the use of a scalable format such
as JPEG2000 [12] allows the dynamic creation of a smaller
resolution image from a single encoded source image. Using
the BSD-based adaptation approach, the source image is stored
along with its BSD, the corresponding BS Schema, and the rel-
evant transformation style sheet. The two latter documents are
shared by all JPEG2000 images on the server. Upon request
from the client, the server applies the style sheet to the BSD and
dynamically generates the adapted bitstream from the resulting
transformed description. Thus, the adaptation is performed on
the server in the compressed domain and independently from
the media’s coding format, rather than during decoding and ren-
dering at the client.

In this scenario, however, when the user successively retrieves
two resolutions of the same image, the data corresponding to
the lower frequencies, although found in both resolutions, are
downloaded twice. JPIP, a standard Internet Protocol presented
in [13], allows selectively requesting and retrieving image data
from the server and hence avoiding the unnecessary duplication
of download. However, this solution is specific to JPEG2000. To
enable selective download in a generic way with the BSD-based
approach, we propose a modified architecture where the server
sends the transformed BSD to the client, which then has to gen-
erate the adapted bitstream on its own. Each time the BSD points
to a segment of data in the source image which is still located
on the server, the client performs a partial HTTP request for the
relevant byte range. When the client retrieves a new version of
the image, the segment of data corresponding to the lower fre-
quencies and already contained in the previous version, does not
need to be downloaded a second time, provided that it has been
stored in a local cache. The traffic overhead due to the trans-
mission of the BSD and due to multiple partial HTTP requests
is amortized if multiple versions of the same content are suc-
cessively retrieved. For example, this is the case for an image

representing a map where the user can zoom in and out through
a wide range of resolutions and at any location on the map. This
can be achieved by encoding the image in the JPEG2000 format
with several resolutions and the use of the so-called precincts,
which spatially divide the image to provide spatial scalability.
The low-resolution image is downloaded once; then by zooming
at a given location in the image, the client will download the
relevant packets of data corresponding to the new required res-
olution and location and build the new image by using the low
frequency data already available. Similarly, when the user re-
quests a shifted view at the same resolution, the client will not
need to download the data corresponding to the overlapping re-
gion already stored in the local cache. The use of a scalable
format along with the BSD-based adaptation framework there-
fore supports easy retrieval of multiple image versions from a
single source image.

B. Distributed Adaptation

In the second use case, an end user is interested in a cer-
tain movie, described by his/her user preferences, which he/she
would like to consume on his/her mobile computer. The DIA
specification provides means for describing the usage environ-
ment including the user preferences, the terminal capabilities,
and the network characteristics.

Assume that another end user is interested in consuming the
same movie but within another usage environment, i.e., on a
different device and/or network. Optimal network utilization is
achieved by transmitting the movie to an intermediate node, i.e.,
a proxy, between the provider and the consumers such that the
movie satisfies a set of usage environment constraints common
to all consumers. On reception of the movie, the proxy caches,
adapts, and forwards the movie in order to satisfy the usage envi-
ronment constraints of the specific users who requested this par-
ticular movie. The adaptation according to the common usage
environment constraints is performed at the server and the adap-
tation for individual users is conducted at the proxy. Hence, this
kind of adaptation is referred to as distributed adaptation [14].

This kind of proxy incorporates functionality that is different
to what is done by a traditional proxy. This proxy not only in-
tercepts and services client requests, but also oversees the usage
environment downstream toward the clients and reshapes their
various usage environment constraints to one or more common
sets. These common constraints are then attached to the request
for the multimedia contents from the actual server (or yet an-
other proxy).

Fig. 2 depicts the concept of distributed adaptation within a
heterogeneous environment.

In a conventional approach, each intermediate node would
have to implement and maintain a separate (encoding, decoding,
and adaptation) module for each coding format encountered.
However, when following the BSD-based adaptation approach,
only one adaptation module needs to be implemented which ad-
heres to the processing model as defined in the DIA specifica-
tion. This adaptation module can be used to adapt content based
on all coding formats according to the various user, terminal,
and network characteristics.

466 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 3, JUNE 2005

Fig. 2. Concept of distributed adaptation.

IV. ARCHITECTURE FOR STREAMING AND

CONSTRAINED ENVIRONMENTS

The previous section shows application scenarios where the
BSD framework may encounter specific challenges resulting
from constraints of the environment. In particular, limited com-
puting and memory resources of the involved nodes (proxy or a
thin client) as well as streaming the media to terminal nodes may
pose problems. The first main challenge pertains to the com-
plexity and memory requirements of the processors involved
and particularly the BSD transformation when an off-the-shelf
XSLT processor is to be used. Such a case, i.e., standard XSLT,
requires that the complete BSD (which is potentially memory
consuming) is available to the transformation module (which is
potentially compute intensive). The second main limitation per-
tains to the type of media being adapted: in case of a streamed
video or audio, the BSD will become available to the transfor-
mation only piecewise, with the pieces preferably being prop-
erly synchronized with the bitstream segments they describe.
However, since XSLT requires loading the complete input XML
document prior to transforming it, the adaptation cannot take
place until the streaming session is over. Both issues are interre-
lated and may be considered as two aspects of the global issue
of adapting and improving the BSD framework to constrained
and/or streaming environments.

Two complementary solutions are proposed below to tackle
this issue. The first solution proposes a software architecture
using SAX and a new transformation language named STX as
an alternative to XSLT. The second solution proposes to seg-
ment the input BSD into successive PUs that can be indepen-
dently processed by the XSLT processor, hence minimizing the
memory requirements. Note that both solutions are applicable
to BSDs and gBSDs to some extent.

A. SAX-Based Bitstream Adaptation

The left part of Fig. 3 depicts the principal software architec-
ture initially developed for simple scenarios such as the adap-
tation of nonstreamed content on a server, as described in Sec-
tion III-A. The upper part in the diagram is optional, depending
on whether a BSD is already available or not. A BSD may
be generated at encoding time or later by a dedicated software

Fig. 3. Architecture for nonstreamed (left) and streamed (right) content.

module, in which cases the generation is coding format-depen-
dent. Conversely, the generic BintoBSD processor allows gener-
ating the BSD in a coding format-independent way by using the
information conveyed by the BS Schema. The remainder of the
architecture is as follows: the BSD is transformed by an XSLT
processor and the resulting transformed BSD is then processed
by the BSDtoBin processor to generate the bitstream. Note that
although it is duplicated in the figure for the sake of clarity,
the same BS Schema is normally used by the BintoBSD and
BSDtoBin processors. Furthermore, the input bitstream inter-
venes in the bitstream generation (BSDtoBin), which is not de-
picted in the figure.

The architecture is similar for a generic Bitstream Syntax
Description (gBSD), except for the description generation step
(BintoBSD), which is not applicable in this case. The BSDtoBin
processor can then be replaced by a dedicated and more efficient
processor, named gBSDtoBin, which does not need to load and
parse the gBS Schema since this one is standardized and can be
hard coded.

In this processing chain, the BintoBSD processor does not
need to load the complete input bitstream to parse it. Simi-
larly, the BSDtoBin step progressively generates and writes the

DEVILLERS et al.: BITSTREAM SYNTAX DESCRIPTION-BASED ADAPTATION 467

output bitstream, with no need to store it internally. As stated
at the beginning of this section, the critical issue for using the
BSD framework in constrained or streaming environments is
the internal memory requirements of the BintoBSD, XSLT, and
BSDtoBin processors with regard to the input and output XML
documents. Note though that we do not consider the memory
footprint of each software module, but only of the data sets being
used or produced. The following subsections study the cases of
the bitstream generation (BSDtoBin) and BSD transformation.
The BintoBSD is itself mentioned in Section V as a future re-
search topic.

1) SAX Implementation of BSDtoBin: The case of the BSD-
toBin processor can easily be solved by using a SAX interface
[15] instead of an input document object model (DOM) [16]
tree. DOM and SAX are two widely used Application Program-
ming Interfaces (API) for accessing the content of an XML doc-
ument, explained hereafter.

DOM specifies an abstract model for XML documents con-
sisting of a hierarchical tree of “nodes”, which allows an easy
access to data, but is memory consuming since the full document
usually needs to be loaded. Alternatively, SAX is a lower level
API specifying a set of callback functions called events. In this
case, the parser and the application do not exchange a memory
representation of the input document as with the DOM, but a
stream of events.

A new lightweight implementation of the BSDtoBin pro-
cessor has been developed, using this set of input SAX events
to generate the bitstream. In this implementation, the BSD-
toBin processor does not need to reconstruct or store the full
document in memory, but instead processes the input SAX
events on the fly. In other words, the bitstream is progressively
generated while the input BSD is being parsed. The input SAX
events consumed by the BSDtoBin processor can be emitted by
a SAX parser reading the BSD, or, in our case, transmitted as
an output of the BSD transformation as described below.

Note that, conversely, and as for BintoBSD, the BS Schema
still needs to be fully loaded, which, due to its limited size, is
not an issue though.

2) Use of Streaming Transformations: STX: Unlike BSD-
toBin where the memory requirements can be reduced by an
appropriate implementation, the fact that the XSLT processor
needs to load the full XML document before processing it is
an inherent constraint of the language. As seen above, this may
be a blocking issue in constrained or streaming environments.
It should be noted though that the choice of the transformation
language is not mandated by the DIA specification; the use of
XSLT is provided as a preferred example due to its wide accep-
tance in the XML world. To overcome this inherent limitation
of XSLT, we propose to use another XML transformation lan-
guage named STX. STX [17], [18] is a promising ongoing open
source project, aiming at specifying a new transformation lan-
guage for processing a stream of SAX events. STX uses a syntax
similar to XSLT, and, according to the authors, can achieve any
transformation specified in XSLT. Implementations are avail-
able, though not optimized, which still impedes objective per-
formance evaluation compared to XSLT. The input SAX events
are processed according to a set of templates and trigger new
output events. For the matching process, and unlike XSLT, the

STX processor internally stores a limited context comprising the
current event, the following one, and a stack of the ancestors of
the current element node. STX style sheets can also be cascaded
to form a bank of transformations.

In some cases, to process an event, an information is required
that is available later in the stream of events. STX allows
buffering a substream of events until the required information
is retrieved, and then re-processes this buffer. In this case, the
extra memory consumption due to buffering is not inherent
in the transformation language, but is due to the bitstream
structure and is controlled by the style sheet. Any dedicated
software would face the same constraint.

By using STX and a SAX-based implementation of BSD-
toBin, it is then possible to plug the output of the STX pro-
cessor into the input of BSDtoBin. In this way, no intermediate
data needs to be produced. Reciprocally, the input SAX events
consumed by the STX filter are themselves produced by a SAX
parser reading the input BSD, or by the BintoBSD processor
when the BSD is produced on the fly. The full architecture based
on SAX events is depicted on the right-hand side of Fig. 3.

B. PU-Based Bitstream Adaptation

In the previous section, an approach of event triggered
processing of BSDs is explained which can be described as
streamed processing of an XML document. In this section, a
mechanism for streaming the BSD itself will be described and
concepts for packetization of this stream will be specified to en-
able XSLT transformations under the following requirements.

– Synchronized transport, consumption, and play-out of
media streams such as audio or video has to be supported.

– Adaptation on constrained devices has to be supported,
e.g., the adaptation of a JPEG2000 image or MPEG-4
video on a network proxy limited in terms of memory size.

Accordingly, streaming of BSD is not only considered
for time-based media streams but also for nonsynchronized
media streams. In the following, the approach developed for
the streaming of the descriptions is applicable to both BSDs
and gBSDs. Conversely, the processing of the PUs is more
specifically dedicated to gBSDs. Consequently and for the sake
of consistency, we will focus on gBSDs.

1) Streaming of gBSDs: The motivation to investigate
streaming formats for gBSDs is given by the block diagram of
a gBSD-based bitstream adaptation in Fig. 4. In this block dia-
gram, the whole gBSD is broken down into PUs that describe
single segments of the bitstream (BS-S). The stream of PUs is
transmitted to a gBSD processor (gBSD-P) along with the de-
scribed bitstream. Note that we do not cover the issue of stream
synchronization in this paper, but rather focus on the streaming
and processing of the gBSD. As soon as the processor receives
a PU, an appropriate transformation (T) can be applied. Based
on the resulting transformed PU (T-gBSD-PU), an adaptation
of the described bitstream segment can be conducted by means
of the bitstream processor (BS-P) which generates the adapted
bitstream segment (A-BS-S), as well as its corresponding PU
(TU-gBSD-PU). Both, the TU-gBSD-PU and the A-BS-S can
now be streamed further to the receiver. As a result, in each

468 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 3, JUNE 2005

Fig. 4. gBSD transformation and bitstream adaptation using PUs.

transformation step only a fragment of the gBSD, called a PU,
and the bitstream segment described by that PU are dealt with.

However, to support such an architecture, partitioning of the
gBSD into PUs has to be provided. XML documents in general,
and therefore also gBSDs, have a hierarchical structure: they
are built by cascading elements which are signaled by opening
and closing tags. Thus, XML documents do not natively support
streaming as required by the described architecture—a trans-
mitted XML document is only well-formed if also the closing
tag of the root element is received.

Recently, also in the domain of content description, specif-
ically for MPEG-7 metadata, the need for streaming of XML
documents was identified and investigated. As a result, an
XML streaming format for textual (TeM) and efficient binary
(BiM) representations of XML documents was standardized in
MPEG-7 Part 1 (Systems) [19], [20]. Both formats, TeM and
BiM, are capable of breaking up the XML document (metadata)
into so-called fragment update units (FUUs), which contain
composition instructions (FragmentUpdateCommands), con-
text information (FragmentUpdateContext) along with the
fragment of the actual XML document. The FragmentUp-
dateCommand can signal that content be added or deleted,
among other operations. The FragmentUpdateContext contains
information about data types, parent elements, and the position
of the transmitted fragment in the gBSD document. Both
formats, TeM and BiM, have a broad set of tools to support
functionalities such as dynamic documents on the receiver side
or transmission in arbitrary order. For streaming of gBSDs, we
concentrate here on the partitioning of a static XML document
into consecutive BiM FUUs. Hence, only the addContent
FragmentUpdateCommand is signaled and the BiM FUUs
are arranged according to the order of the contained elements
in the gBSD. As a result, the order of the transmitted FUUs
corresponds to the order of the described bitstream segments.

2) Concept of PUs: So far, a mechanism to fragment
and stream an XML document was described. According to
the MPEG-7 Systems specification [19], [20], the fragments
(FUUs) can be used on the receiver side to reconstruct the
original XML document by applying the received FUUs based
on the FragmentUpdateContext and the FragmentUpdateCom-
mand to a so called binary description tree which is similar to
DOM, but includes type and position information of each node.
To avoid invalid states, the tree shall only be processed by an
application if an access unit (AU) consisting of an arbitrary
number of FUUs has completely been applied to the binary
description tree. By this convention, the encoder can signal to

Fig. 5. PU fragmentation of a gBSD describing a JPEG2000 bitstream.

the decoder the states in which the binary description tree is
valid and can be consumed.

In contrast to the reception of AUs on the receiver side, the
fragments of the gBSD (PUs) in the architecture of Fig. 4 are
processed individually. Therefore, a PU is defined as a set of one
or more FUUs which comprises all the information required for
the adaptation of the bitstream segment described by this PU.
For instance, the syntax of a JPEG2000 bitstream includes sev-
eral parameters indicating the length of bitstream segments, e.g.,
within the bitstream header or tiles. According to the definition
of the PU, the description of these parameters has to be con-
tained in a single PU along with the gBSD elements describing
the corresponding bitstream segment. An example of this parti-
tioning into PUs is given in Fig. 5.

In Fig. 6, a video bitstream encoded using the MPEG-4 Visual
Advanced Simple Profile is illustrated. The bitstream comprises
frames of different types and the gBSD is fragmented into PUs
describing a so-called group of visual object planes. The frag-
mentation could be also based on visual object planes, shots, or
scenes depending on the application requirements.

3) Processing of PUs: To process the gBSD partitioned into
PUs by means of, e.g., an XSLT processor, the PUs have to be:
1) identified in the gBSD stream and 2) instantiated as XML
document representations. Mechanisms for both required pro-
cessing steps are described in this section.

For signaling the PUs, two approaches are applicable: on the
gBSD (XML) level and on the systems (binary) level. On the
gBSD level, a PU is identified by specific markers in a gBSD
element which needs to be referenced accordingly, e.g., by an
additional parameter in the BSDRef attribute of the BSDLink
description. The advantage of this approach is that the definition
of PUs can vary with respect to the transformation applied. If
signaling on the systems level is used, the PUs are represented
by AUs in the MPEG-7 BiM stream. As described above, this
requires the encoder to ensure that after reception of each AU
the binary description tree is valid. However, the partitioning
of the gBSD into elements based on gBSDUnitType is usually
the finest level of partitioning and fulfills this requirement. The

DEVILLERS et al.: BITSTREAM SYNTAX DESCRIPTION-BASED ADAPTATION 469

Fig. 6. PU fragmentation of a gBSD describing an MPEG-4 video bitstream.

TABLE I
SIZES OF BITSTREAM SEGMENTS AND CORRESPONDING

PUs FOR TEST SEQUENCES

advantage of this approach is fast determination of the start and
end of a PU without interpretation of the MPEG-7 fragment
information.

The restriction of context information in the transmission
of gBSDs by using PUs based on MPEG-7 Systems enables
the usage of legacy transformation processors such as XSLT in
streaming scenarios. However, for this purpose, the so-called
PU documents need to be decoded. A PU document is an XML
representation of the binary description tree which is built from
the DecoderInit initially sent to configure the MPEG-7 BiM
decoder and the PU to be processed. Accordingly, legacy XSLT
transformations can be specified which are applicable to these
PU documents. Using this approach, existing and efficient im-
plementations of XSLT processors can be applied with limited
context information. Fragmenting the gBSD into PUs helps
to efficiently resolve the major problem of XSLT processors
which is that, in legacy mode, they build up a context of the
whole gBSD of a stream before a transformation is applied.

Experiments were conducted using the “Foreman” test se-
quence encoded in CIF resolution according to MPEG-4 Vi-
sual Advanced Simple Profile @ Level 1 and the music test
sequences of the European ISIS project encoded with the bit-
sliced arithmetic coding (BSAC) codec according to MPEG-4
Mobile Audio Internetworking Profile @ Level 1. In the first
case, a gBSD was generated to support B-VOP dropping. In the
case of BSAC, SNR scalability was supported by the gBSD. In
Table I, the size ranges of the described BS-S and the resulting
PUs in textual and binary representations are listed. The typical
sizes of textually represented PU documents for MPEG-4 video
and MPEG-4 BSAC streams are about 5–6 kB and their cor-
responding binary representations are about 550–600 B. Even
in the textual representation, the resulting PUs require modest
memory in XSLT processing. This enables transformation and
adaptation even on memory constrained devices.

V. FUTURE WORK

Beyond the developments presented above for adapting the
architecture to streaming and constrained environments, we
are currently working on evaluating and optimizing the overall
performance of the adaptation methods. For this, we are inves-
tigating how to reach the best trade-off between preserving a
modularized and generic approach applicable to both BSDs and

gBSDs, and optimizing the performance by using dedicated
tools for gBSDs. In the PU approach in particular, we are con-
centrating on the use of gBSDs and XSLT which allows using
the dedicated and optimized gBSDtoBin processor instead of
the more generic BSDtoBin.

The computation time of the transformation can be decreased
by an adequate design of the transformation style sheet, mini-
mizing in particular the number of candidate templates to be
matched. First experiments show that the gain is significant, re-
gardless of the XSLT implementation being used. Furthermore,
it is possible to gain processing time by combining the XSLT
transformation and the adapted bitstream generation (gBSD-
toBin) in a single dedicated implementation.

Another challenging research topic is the possibility to
process the gBSDs in the binary domain. As shown in Sec-
tion IV-B, it is possible to use the efficient binary representation
of a gBSD in the MPEG-7 BiM format. A first advantage of
this format is obviously the reduction of the description size.
Furthermore, in this binary format, the XML elements and their
contents are not represented by strings, but by binary symbols
deduced from the schema. Using the binary version of a gBSD
should therefore significantly reduce the complexity of some
processing steps requiring string comparisons otherwise, which
are particularly resource consuming. For this, new transforma-
tions need to be specified that would be capable of processing
binary descriptions. Processing and applying transformations
in the binary domain is therefore a challenging and promising
research topic for our future work.

Lastly, another issue is the adaptation of the BintoBSD pro-
cessor to streaming environments where the BSD needs to be
generated on the fly, e.g., in conversational scenarios where the
video is produced and encoded continuously. A specific feature
of BSDL with respect to the BSD generation is the use of XPath
expressions [21], as explained in [2] and [6]. These expressions
are evaluated at run-time, i.e., while parsing the bitstream and
progressively generating the BSD, against the partially instan-
tiated description. For this, the BintoBSD processor needs to
store an internal representation of the description, typically as
a DOM. In streaming scenarios or for very large bitstreams,
the growing size of this internal representation may generate a
memory overflow. To solve this issue, we are investigating how
to restrict the use of XPath expressions so that only a minimal
part of the description needs to be stored and the BintoBSD pro-
cessor can complete the fully streamable architecture depicted
in Fig. 3.

VI. CONCLUSION

In previous work, a generic framework for adapting multi-
media content in a coding format-independent way was intro-
duced. This method uses XML for describing the high-level

470 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 3, JUNE 2005

structure of a bitstream and the XSLT language to transform
this description into a new document, from which the adapted
bitstream can be generated. This framework was initially de-
veloped for nonstreamed content; this paper shows how it can
be adapted to streaming and constrained environments. To this
end, new solutions are required to overcome some inherent limi-
tations of XML-related technologies such as XSLT, which were
initially developed for static, text documents. New multimedia
applications have raised and will raise new, challenging require-
ments such as streaming, synchronization, and efficient binary
representation. This paper shows that by using recent technolo-
gies such as MPEG-7 BiM or the STX transformation language,
XML can be efficiently used for multimedia content adaptation
in a streaming and constrained environment.

ACKNOWLEDGMENT

This paper is based on the work conducted by several people
in the European research projects ISIS and DANAE. In partic-
ular, the authors thank G. Panis for his valuable input regarding
the experimental results for this contribution.

REFERENCES

[1] A. Vetro and C. Timmerer, “Overview of the digital item adaptation stan-
dard,” IEEE Trans. Multimedia, vol. 7, no. 3, pp. 418–426, Jun. 2005.

[2] A. Vetro, C. Timmerer, and S. Devillers, “Digital item adaptation,” in
The MPEG-21 Book. Hoboken, NJ: Wiley, 2005, to be published.

[3] G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer,
S. Devillers, and M. Amielh, “Bitstream syntax description: A tool for
multimedia resource adaptation within MPEG-21,” EURASIP Signal
Process.: Image Commun. J., vol. 18, no. 8, pp. 721–747, Sep. 2003.

[4] XSL Transformations (XSLT), W3C Recommendation (1999). [On-
line]. Available: http://www.w3.org/TR/xslt

[5] M. Amielh and S. Devillers, “Bitstream syntax description language:
Application of XML schema to multimedia content adaptation,” in Proc.
11th Int. World Wide Web Conf. (WWW2002), Honolulu, HI, May 2002.

[6] S. Devillers, “An extension of BSDL for multimedia bitstream syntax
description,” in Proc. 9th Int. Conf. Parallel and Distributed Computing
(Euro-Par 2003), vol. 2790, Lecture Notes in Computer Science, Aug.
2003.

[7] Information Technology – Multimedia Framework – Part 7: Digital Item
Adaptation, ISO/IEC 21 000-7.

[8] XML Schema Part 0: Primer, Part 1: Structures and Part 2:
Datatypes, W3C Recommendation (2001). [Online]. Available:
http://www.w3.org/XML/Schema

[9] D. Mukherjee, E. Delfosse, J. G. Kim, and Y. Wang, “Adaptation QoS
and UCD,” IEEE Trans. Multimedia, vol. 7, no. 3, pp. 454–462, Jun.
2005.

[10] A. Eleftheriadis, “Flavor: A language for media representation,” in ACM
Multimedia Conf., Seattle, WA, Nov. 1997, pp. 1–9.

[11] D. Hong and A. Eleftheriadis, “XFlavor: Bridging bits and objects in
media representation,” in Proc. IEEE Int. Conf. Multimedia and Expo
(ICME’2002), Lausanne, Switzerland, Aug. 2002.

[12] Information Technology – JPEG 2000 Image Coding System – Part 1:
Core Coding System, ISO/IEC 15 444-1:2000.

[13] D. Taubman and R. Prandolini, “Architecture, philosophy and perfor-
mance of JPIP: Internet protocol standard for JPEG2000,” in Proc. Int.
Symp. Visual Communications and Image Processing (VCIP2003), vol.
5150, SPIE, Jun. 2003, pp. 791–805.

[14] C. Timmerer, G. Panis, H. Kosch, J. Heuer, H. Hellwagner, and A.
Hutter, “Coding format independent multimedia content adaptation
using XML,” in Proc. SPIE Int. Symp. ITCom 2003, vol. 5242, Orlando,
FL, Sep. 2003.

[15] Simple API for XML [Online]. Available: http://www.saxproject.org
[16] Document Object Model (DOM) Level 2 Core Specifica-

tion, W3C Recommendation (2000). [Online]. Available:
http://www.w3.org/TR/DOM-Level-2-Core

[17] O. Becker, “Transforming XML on the fly,” in XML Europe 2003, May
2003.

[18] Streaming Transformations for XML (STX), Working Draft (2004).
[Online]. Available: http://stx.sourceforge.net

[19] Information Technology – Multimedia Content Description Interface –
Part 1: Systems, ISO/IEC 15 938-1.

[20] J. Heuer, C. Thienot, and M. Wollborn, “Binary format,” in Introduction
to MPEG-7: Multimedia Content Description Interface, B. S. Manju-
nath, P. Salembier, and T. Sikora, Eds. New York: Wiley, 2002, pp.
61–80.

[21] XML Path Language (XPath), W3C Recommendation (1999). [Online].
Available: http://www.w3.org/TR/xpath

Sylvain Devillers received the engineer degree from
Ecole Nationale Supérieure des Télécommunications
de Paris (ENST), Paris, France, in 1993, with a spe-
cialization in image processing.

After working for Alcatel CIT, Cork, Ireland,
he joined Philips Research France in 1996, where
he worked on image processing algorithms for
medical applications, then on multimedia indexing
and multimedia content adaptation with a strong
involvement in MPEG standardization. In 2003, he
then moved to IMEC, Leuven, Belgium, to continue

his contribution to MPEG-21 DIA. His current research interests are related to
multimedia applications, scalable media, and XML technologies.

Christian Timmerer received the Dipl.-Ing. degree
in applied informatics from the Department of
Information Technology (ITEC), University of Kla-
genfurt, Klagenfurt, Austria, where he is currently
pursuing the Ph.D. degree in the field of multimedia
adaptation in the context of MPEG-21.

He is currently a University assistant and chairs the
IT administration group of ITEC. At the University
of Klagenfurt, he has been working on coding-format
agnostic resource adaptation within the MPEG-21
Multimedia Framework and he actively participated

in the work of ISO/MPEG for several years. His other research interests include
the transport of multimedia content, multimedia adaptation in constrained and
streaming environments, and distributed multimedia adaptation.

Jörg Heuer received the Dipl.-Ing. degree in elec-
trical engineering at the Friedrich-Alexander Univer-
sity, Erlangen, Germany, 1997, with a specialization
on digital signal processing and high-frequency engi-
neering and the Ph.D. degree (supported by the Cor-
porate Technology of Siemens) from the Friedrich-
Alexander University in 2003 for his work on multi-
media content description.

He joined the Corporate Technology of Siemens
AG, Munich, Germany, in 2002, where he is working
as Senior Scientist in the fields of multimedia content

description and metadata coding in the domain of communication applications.
His other research interests include multimedia adaptation in heterogeneous en-
vironments and indexing of metadata.

Hermann Hellwagner (S’85–M’95) is a Full
Professor of Computer Science at the Department
of Information Technology (ITEC), University of
Klagenfurt, Klagenfurt, Austria. His current areas
of research include distributed multimedia systems,
multimedia communications, and Internet QoS. His
current projects involve digital video communica-
tion, a streaming protocol and a system supporting
media adaptation, and multimedia bitstream de-
scription techniques within the MPEG-21 Digital
Item Adaptation (DIA) standardization effort. He

is the editor of several books and has published papers on parallel computer
architecture and parallel programming and, more recently, on multimedia
communications and adaptation.

Dr. Hellwagner is a member of the German Informatics Society (GI) and
the Austrian Computer Society (OCG), as well as the Head of the Aus-
trian delegation to the Moving Picture Experts Group (MPEG – ISO/IEC
JTC1/SC29/WG11). He has also organized several international conferences
and workshops.

	09_Bitstream Syntax Description-Based Adaptation in Streaming and Constrained Environments.pdf
	toc
	Bitstream Syntax Description-Based Adaptation in Streaming and C
	Sylvain Devillers, Christian Timmerer, Jörg Heuer, and Hermann H
	I. I NTRODUCTION
	II. B ACKGROUND

	Fig.€1. MPEG-21 DIA descriptions used for multimedia content ada
	III. A PPLICATION S CENARIOS FOR BSD-B ASED A DAPTATION
	A. Adaptation on Server or Client
	B. Distributed Adaptation

	Fig.€2. Concept of distributed adaptation.
	IV. A RCHITECTURE FOR S TREAMING AND C ONSTRAINED E NVIRONMENTS
	A. SAX-Based Bitstream Adaptation

	Fig.€3. Architecture for nonstreamed (left) and streamed (right)
	1) SAX Implementation of BSDtoBin: The case of the BSDtoBin proc
	2) Use of Streaming Transformations: STX: Unlike BSDtoBin where
	B. PU-Based Bitstream Adaptation
	1) Streaming of gBSDs: The motivation to investigate streaming f

	Fig.€4. gBSD transformation and bitstream adaptation using PUs.
	2) Concept of PUs: So far, a mechanism to fragment and stream an

	Fig.€5. PU fragmentation of a gBSD describing a JPEG2000 bitstre
	3) Processing of PUs: To process the gBSD partitioned into PUs b

	Fig.€6. PU fragmentation of a gBSD describing an MPEG-4 video bi
	TABLE I S IZES OF B ITSTREAM S EGMENTS AND C ORRESPONDING PUs FO
	V. F UTURE W ORK
	VI. C ONCLUSION
	A. Vetro and C. Timmerer, Overview of the digital item adaptatio
	A. Vetro, C. Timmerer, and S. Devillers, Digital item adaptation
	G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timme

	XSL Transformations (XSLT), W3C Recommendation (1999). [Online]
	M. Amielh and S. Devillers, Bitstream syntax description languag
	S. Devillers, An extension of BSDL for multimedia bitstream synt

	Information Technology Multimedia Framework Part 7: Digital Item
	XML Schema Part 0: Primer, Part 1: Structures and Part 2: Dataty
	D. Mukherjee, E. Delfosse, J. G. Kim, and Y. Wang, Adaptation Qo
	A. Eleftheriadis, Flavor: A language for media representation, i
	D. Hong and A. Eleftheriadis, XFlavor: Bridging bits and objects

	Information Technology JPEG 2000 Image Coding System Part 1: Cor
	D. Taubman and R. Prandolini, Architecture, philosophy and perfo
	C. Timmerer, G. Panis, H. Kosch, J. Heuer, H. Hellwagner, and A.

	Simple API for XML [Online] . Available: http://www.saxproject.o
	Document Object Model (DOM) Level 2 Core Specification, W3C Reco
	O. Becker, Transforming XML on the fly, in XML Europe 2003, May

	Streaming Transformations for XML (STX), Working Draft (2004). [
	Information Technology Multimedia Content Description Interface
	J. Heuer, C. Thienot, and M. Wollborn, Binary format, in Introdu

	XML Path Language (XPath), W3C Recommendation (1999). [Online] .

